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SUMMARY

A method for developing coordinate-transformation equations for a
multiple-degree-of-freedom flight simulator is presented. The equations
as developed are applicable in particular to the NASA five-degree-of-
freedom piloted flight simulator; in general, howsver, the method of their
development is applicable to transformation equations for other, similar
simulators of fewer or of more degrees of freedom.

Because the NASA simulator has a very limited range of displacement
in one of its modes of motion the equations are written for four degrees
of freedom instead of for five. Examination of the singularities of the
equations showed it possible to reproduce any combination of four of the
¢ix components of motion, three angular and three linear, of the vehicle
being simulated. It was found that, in most cases, there is more than
one way to simulate each combination, the most desirable way determined
by the restrictions imposed by the singularities of the equations.

INTRODUCTION

Piloted flight simulators are used to investigate problems associated
with the control of humanly piloted aircraft and spacecraft, both existing
and proposed. These simulators impose upon the pilot a partial reproduc-
tion of stimuli pertinent to his control of the vehicle. In the main,
these are stimuli of the visual and of the kinesthetic senses. Existing
simulators range from the relatively simple, which simulate only the
visual stimulus from the panel instruments, to the highly complex, which
simulate both the kinesthetic stimulus from the motion of the vehicle
and the visual stimulus from the scene outside the cockpit.

The Ames Research Center has recently constructed a five-degree-of-
freedom motion simulator, a piloted centrifuge, capable of reproducing
components of both angular and linear motion. A study was mede to examine
how faithfully linear acceleration and angular velocity can be reproduced
on the Ames simulator, and to determine how to program a desired
simulation. This report was drawn from that study.



The present report describes the method used to develop and analyze
the kinematics equations of the simulator. Although the details of the
geometry and of the partitioning of the equations apply explicitly to the
Ames simulator, the method is general and can be used to study the
kinematic simulations allowed on any piloted centrifuge with several
degrees of freedom.

The analysis begins with a description of the physical configuration
of the Ames simulator. The desired relationships between simulator
kinematics and linear acceleration and angular velocity are next deter-
mined. The resulting expressions are rearranged so that the limitations
imposed on the simulation by the mathematical constraints of the trans-
formation equations can be explored. A procedure is then described for
determining initial conditions to be used in programming a simulation
on an analog computer. Finally, the relationships between the axes of
the simulator cockpit and the axes of the simulated vehicle are examined.

NOTATION

total vector linear acceleration of the center of rotation of
the simulator cockpit

= |

ay magnitude of the component of A in the direction §C
aig magnitude of the component of A in the direction 1 5
i=1,2,3

C axes set of three right-hand orthogonal axes fixed in the centrifuge
arm; origin at the center of rotatlon of the cockpit;
orientation defined by T 5 5C 3

G axes set of three right-hand orthogonal axes fixed in the simulator
cockpit; origin at the center of rotation of the cockpit;
orientation defined by EG, EG, 3

J axes set of three right-hand orthogonal axes fixed in the inner
gimbal; origin at the center of rotatlon of the simulator
cockpit; orientation defined by 1%, 2 , 3

L axes set of three right-hand orthogonal axes fixed in the earth;
origin at the intersection of the centrifuge arm with the
axis of rotatlon of the centrifuge arm; orientation defined

by IL, 2L, 3L

M axes set of three right-hand orthogonal axes fixed in the outer
gimbal; origin at the center of rotation of the cockpit;

crientation defined by ™ "y EM, 3M
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72

vector of unit magnitude, forming a right-hand orthogonal
triad with 2C and 3

vector of unit magnitude, orthogonal to TC and §C, along the
centrifuge arm, positive from the C axis; origin toward the
axis of rotation of the arm

vector of unit magnitude, parallel to §IG along the outer
gimbal drive axis; positive downward

. . -J

identical to 1

vector of unit magnitude fixed in the cockpit, forming a
right-hand orthogonal triad with 16 ang 3¢

vector of unit magnitude, fixed in the cock%}t, forming a
right-hand orthogonal triad with TC ana 2

vector of unit magnitude along the cockpit @Eive axis, forming

a right-hand orthogonal triad with 3J and 39
identical to oM

vector gf unit_magnitude forming a right-hand orthogonal triad
with 27 and 19

vector of unit magnitude along the axis of rotation of the
centrifuge arm; positive dovnward

vector of unit_magnitude forming a right-hand orthogonal triad
with 2M ana M

vector of unit magnitude along the inner gimbal drive axis,

forming a right-hand orthogenal triad with 1M and 3M
identical to §C

angular displacement between EJ gnd EG and between §J and §G,
in the plane perpendicular to 1J and gositive according to
1

Ege right-hand rule with respect to 1J; zero when 3J = 26,
39 = 3G

angular displacement between ™ ang 77 and between 3M and 3J
in the plane perpendicular to M and_ﬁésitive according to
2 .

the right-hand rule with respect to 2; zero when ™ = 1J,
M - 37



Y3 angular displacement between IC and iﬁiand between 2 and
2Min the plane perpendicular to §C and positive according
to the right-hand rule with respect to §C; zero when 1C = iM,

%i time rate of change of 75, 1 =1, 2, 3

A angular velocity of the centrifuge arm about §L, positive
according to the right-hand rule with respect to 3L

P length of centrifuge arm, perpendicular distance between
3L and 3C

0 total vector angular velocity about the center of rotation
of the simulator cockpit

wiG magnitude of the component of € about TG, positive according

to the right-hand rule with respect to iG, i = 1, 2, 3
THE SIMULATOR

Figure 1 is a photograph of the Ames five-degree-of-freedom piloted
flight simulator. The cockpit is set in gimbals so that it can rotate
independently about three axes; the cockpit and gimbal assembly is mounted
on the end of the centrifuge arm, which can rotate in a horizontal plane
and thereby impose centrifugal acceleration upon the cockpit. In addition,
the cockpit (and gimbal assembly) can accelerate vertically with reference
to the arm. However, because of the very limited range of vertical
displacement, vertical acceleration of significant magnitude can be
imposed only in pulses of very short duration. The simulator can, of
course, additionally provide the visual stimulus from the cockpit panel
instruments, but here we will be concerned with only the kinesthetic
stimulus. The transformation equations relate the coordinates of the
angular and the linear accelerations along and about cockpit axes to
the coordinates along and about the axes of freedom of the simulator.
Because control over the vertical acceleration is quite restricted, it
is anticipated that techniques for using this vertical degree of freedom,
to null spurious transient accelerations, will be developed empilrically
in practice; therefore, in the equations the simulator is treated as
having only four degrees of freedom instead of five. The vertical
acceleration is treated as an independent fixed input to the system.

1
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THE COORDINATE-TRANSFORMATION EQUATIONS

The coordinate systems assigned to the several independent parts
of the simulator are indicated in figure 2, a schematic diagram of the
simulator. The notation and the coordinate-transformation procedures of
reference 1 will be followed.

The degrees of freedom of the simulator are ss follows: The centri-
fuge arm can rotate about §L with angular velocity of magnitude A. The
outer gimbal can rotate about §C with angular velocity of magnitude 73,
the inner gimbal about 2M with magnitude 7o, and the cockpit about 1Y
with magnitude ¥1. Limited, linear travel of the gimbal assembly (outer
gimbal, inner gimbal, and cockpit) is possible alcng the unit vector 3C.
However, as mentioned before, in the development of the equations this
mode of motion is not treated as & degree of freecom. The acceleration
along 3C is of magnitude av-

In the discussions which follow, the axes 3L, 3C, M, TJ will comprise
the drive-axes system of the simulator.

The total vector angular velocity of the cocioit, expressed in
coordinates along drive axes, 1is

Q= 7.319 + 72M o+ 753C + A3L
and the total vector linear acceleration is

— e — = —
L= NIC + p(AY 2C + ay3C

The vectors T and A can also be expressed as sums of components
along the three cockpit axes, the ¢ axes. lLet wig be the coordinate
of the component of § about the 1iC axis, and ajg Dbe the coordinate
of the component of A along TG, i=1, 2, 3. Then

= mldIG + ngEG + w3d§G

alGiG + agGEG + 33G§G

1

L

The transformation eguations which have to be developed must relate
the ccordinates along similator-drive axes to the coordinates along
cockpit axes. However, because there are only four degrees of freedom
in the system, there can be a total of, at most, four mutually independent
coordinates which describe both A and Q; that is, among the six G axes
coordinates, W g, WoG, WaG, 21G, 826G, asc, of A and &, four, at most, are
mutually independent, which four being a matter of choice. The remzining
two coordinates are automatically determined onc: the four independent
coordinates have been chosen.



Generally the simulation program will be set up as follows. The
simulator cockpit axes (G axes) will be set to correspond in a particular
way with the axes of the vehicle to be simulated (according to a plan
which will be developed along with the equations). The four G axes
coordinates of & and  to be mutually independent will be chosen to
correspond to the four coordinates of the angular velocity and the linear
acceleration, of the actual vehicle, which are most Pertinent to the
problem being studied and, hence, are to be faithfully reproduced. Then
the transformation equations will be solved for the simulator-drive
coordinates 71, ¥z, 7a, and pN as functions of the four independent
G axes coordinates and, in addition, for the two G axes coordinates
of A and § which were not chosen to be independent. These latter two
define the spurious stimulus to which the simulator pilot is subjected,
that is, that part of the total simulated stimulus which is not a
representation of any stimulus of the actual flight.

In the discussions that follow, the four G axes coordinates which
are to be mutually independent will be called simply the independent
variables, and the four similator-drive-axes coordinates together with
the two dependent G axes coordinates will be called the dependent
variables. The dependent varisbles will always include 71, 72, 73, and
oA (or, as it will later turn out, ph).

EQUATIONS FOR REPRODUCING THE TOTAL ANGULAR VELOCITY AND
ONE COMPONENT OF LINEAR ACCELERATION

Development of the Equations
We may derive, by the method of reference 1, pages 6 and 7, the

general form of the transformation matrix that relates the coordinates
of { in drive axes to the coordinates in & axes:

(o] [17.7¢  ZM.16 3¢.16 3L.16] [y,
weg| = |T9-20  PM.FG 3C. 3¢ LG |5, (1)
g T7.3¢ ZM.36 3C.36 3L.36| |7,
A . J _5\ _

Similarly, for the coordinates of linear acceleration:

—~I\0 £
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aaG

.6 BC.
.36 BC. ]
.gG EC.

(2)

It will simplify somewhat the matrices of equitions (1) and (2) if
we write as unity or as zero those dot products which are unity or zero.

The dot product of two unit vectors is the cosine

them. Therefore, 19 -1G = 1 and 19 - 26 = 1J.3G =

fig. 2).

1 0
o 2M.3G
o M.3C

We

1G -1 0
2G o -1
3G 0 0

— -
..

PA

ai1Gl| =

aoG

aa3G

Then equation (1) becomes

3C.
§C.

_aC.

_5C.

C.

3C.

o

of the angle between

2M. TG = 0 (refer to

z1. 16| [7,
326 |72 (3)
L3 |ie
_?.\._
3C. 1G o(N)?
3020 ey (22)
3C 3G
G [0
Yo | = |-3L-2C
73 -3L .36
(32)
Wiz
Waz
hatctl

can then combine equations (Ea) and (3a) into one set of six equations:



H 0 3C .16 0 o o o -1 o o [7.]
o 2M.3¢  3C.5G 0 o 0o o o0 -1 o0 Vo
o 2M.36  3C.3C 0 o 0o o0 0 0 -1 142
0 0 0 €3¢ .1 o o o o o oA
0 0 0 °-2¢ o -1 0o o 0 0| lag
0 0 0 .36 o o -1 0o o0 of ez
asG
WiG
WaG
_U)SG_J
0 3L . 16 o ] [orh)2
0 3L . 3G 0 A
0 ‘§L' §G 0 avy
- (4)
_3C. G 0 -3C. G
_5C . 3G 0 -3C. 3G
2C. 3G o _3C. 3

Examination of Constraints

This set of six equations has a solution if and only if the deter-
minant of the 6X6 matrix of coefficients of the six dependent variables
is not zero. For example, suppose we choose as the independent variables
the three coordinates of angular velocity, wiG, WoG, and WsGd, and one
coordinate of linear acceleration, aiG. Then the dependent variables will
be 71, 72, 73, PN, 23G, and axG (i, J, k=1, 2, 3but 1 # jFk # 1).
The matrix of coefficients of the dependent variables is

O\ e



B 0 3C. 16 0 0 0
o ZM.zG 3C.FG 0 0 0
o 2M.3¢6 3C.3%6 0 0 0
L (5)
0 0 0 1€.16 -5, ~Bay
0 0 0 1.6 -5y -8
7. 3G 8., -
0 0 0 C-3 Bs 63_1{_

where

1 if m=n
Smn = 0

otherwise

The determinant of (5) is
@303 30) - (@1 30)(30 - 30 |10 T6(0a tay - Ba,0ay)
-IC- 36(8150gy - B3y01y) + 10 39(8a0gy - 623611{)]
So for the equations to have a solution (i.e., fcr the simulation to be
realizable), the following conditions must prevail:
(ZM . 26)(3C . 36) - (BM-36)(3¢- 20) # o
and
1€ - 16(82 83, - Ba;bz)) - 10+ 26(0a1;05, - Bab1y)
+ IC : ?G(S.'LJ&ZK - ESZJZ\)]_k) :/'4 0
To interpret the first condition it is necessary to convert the dot
products to trigonometric functions. The transformation matrices of
equations (1) and (2) represent successive rotations of coordinates

through the angles AN, 73, 72, and 71, in that order. Then (according
to ref. 1, pp. 6-10),
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TL.1C 2L .71C 3L.7C cos A sin A 0
IL.2C 2L.2C 3L.2C} = |-sin A cos A 0
EL 3C 2L. 3C 3L §i i 0 0 1
-;C ™ 2C. 1M §C- ™ r-cos 73 sin 7s 0
1C.2M 2C . oM §C- oM = |-sin Ve cos 73 0
_EC M 2C. 3M 3C.3M 0 0 1
TM.IT M. 1J M 1J] [ cos 75 0 -sin 7>
™. 27 M. 2J M. 2 = 0 1 0
_EM 3J M.z 3M §i sin 75 0 cos 7o
and
IJ . IG 2J . 3G 3J . IG 1 0 0
1J.26 2J-.2G 3J-2G[ = {o cos 71 sin 73
1d - §G 2J - §G §J' 3G 0 -sin 73 cos 71

Furthermore, any number of successive rotations can be combined. For
example,

€. 16 3¢.I16 3C.36 1 0 o cos Yz O  -sin 7o cos ¥a uin ¥s O
1¢-36 2€-26 3C-20] = Jo  cos 7y sin 0 1 0 -sin 73 cos ¥a O
ic '§G R 36 §C' §G 0 -sin 7y cos Y1 sin 7 O cos 7o ¢} 0 1

The matrix of equation (2) now can be written

COs Yo CcOs ¥a cos Yz sin 73 -sin 7o
sin 73 sin 75 cos 73 - cos 73 sin 7g sin 71 sin 75 sin 73 + cos 71 cos 7g sin 7, cos 75

cos 7y sin 7p cos Ya + sin 73 sin 73 cos 73 sin ¥ sin 73 - sin 7; cos 73 cOs Y1 COS Yo

~\0 &= >
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and that of equation (3)

1 0 -sin 7o ~sin 7o
0 cos 71 sin 7; cos 7> sin 73 cos 72
0 -sin 73 COS 731 COS 7o COS 731 €COS8 7o

Then (5), which is composed of elements of the matrices of equations (2)
and (3), becomes

_l 0 ~sin 7o 0 0 0 ]
0 cos 71 sin 73 cos ¥Y» 0 0 0
0 -sin 71 cocs 73 CcOSs 7p o} 0 0
0 0 0 cos Yo COS 73 -613 -Blk
0 0 0 sin 77 sin 75 cos Y3 - cos 71 sin 73 -523 -5z
0 0 0 cos ¥y sin 7z cos Y3 + sin Y1 sin 73 -63J. -63k

Now the first condition necessary for the determinant of (5) to be
other than zero becomes

(cos 71)(cos 71 cos 72) - (-sin 71)(sin 71 cos 72) = cos 75 # O

Therefore

7o # = /2

This condition says that the cockgit drive axis, iJ, must not be alined
with the outer gimbal drive axis 3

The second condition is readily interpretable in dot-product form.
It depends on which linear acceleration component, in addition to wW1G,
Woi, and Wag, is independent. If aj;g 1is independent it. 16 % O; that is,
the 1G axis cannot lie in the plane perpendicular to the 1€ axis. If asG
is independent, 2G cannot be perpendicular to 1C. If asg 1s independent,
§G cannot be perpendicular to IC. In general, if 1C - 1G = O, then the
independence of ajg no longer exists and, like a3q and axg, 1t Es
dependent upon the coordinates of {; that is, all components of A are
dependent on .

Equation (4) can be written in a more general form applicable to the
case W13, Wa@, Wag, and ajye independent.
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T 0 -sin 7s o 0 o | Fy';

o] cos 7y sin 7y cos 7z ] ¢} o] 7“

0 -sin ¥y cos ¥y cos Yo 0 o) 0 53

o 0 0 cos ¥s COS 7s -81y By PA

0 o] o] sin ¥; sin 7z cos Y3 - cos 73 sin 7a -Szj =Bz a3g

_O 0 0 cos ¥, oin 75 cos Y3 + sin Y3 sin 73 —ng 53«& |2kG|
m o o o 0 sin 72 0 A w1 ]
O 1 0 0 §] -sin 73 coc 72 0 WoG
Q o} 1 0] G -CcOS Y1 COS ¥z 0 Wal

) c 0o 0 814 -cos Y2 sin 73 0 sin 7o aig
0 0 0 B2y -sin ¥, sin 7p sin Y3 - cos 7y cos Y3 0 -sin 7, cos 7z p(?'\)z
_O 0 0 Bay -cos Yy sin Yp sin Y3 + zin Y1 cos Ya 6] -cOs Y1 cos Yo 7\

where i, j, k=1, 2, 3but i # J#k # i;

= J1 if m=n
%o {; ot

herwise
Y2 # 1/2
1G.3C 40

EQUATIONS FOR REPRODUCING PART OF THE ANGULAR VELOCITY
AND ALL OR PART OF THE LINEAR ACCELERATION

Development of the Equations

Unfortunately, only for the case in which the independent variables
are made up of all three of the coordinates of angular velocity and one

of the coordinates of linear acceleration do equations (6) have a solution.

Otherwise the determinant of the matrix of coefficients of the dependent
variables is zero. We can get around this by using the rate of change of
linear acceleration instead of the acceleration itself. In C axes
coordinates

A = ohC + 20M2C + 4,3C + (N3C) x (oMC + oAT2C 4+ 2,30)

(oh - pAD)IC + (3pAN)2C + 443C

1§

-1\0 & >
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In G axes coordinates

211G + asq2l + £aG30 + (w616 + w2l - wzG3%)

.
)

X (alGTG + aZGEG + angG)

(410 + aagWan - 22awag)1C + (azg + a1gvag - aagwag) 20

I

+ (asg + 226Y1G - a1g¥2q) 3%
where X indicates the vector product.

The equations for transforming from ¢ axes coordinates to cockpit-
axes coordinates have the matrix of equations (2):

236 TG R - p(N°

81C + 280Wal - 82GWsG
asG + a10WsG - 2aGWiG z¢.56  3C.30 3pAN (7

3C. 3G 3C.30 iy

8aG + as0WiG - 810WaG

We can combine equations (3) and (7) as we did (2) and (3):

1 0 3. 10 o o o o - c o] 5]
o ™. 3C.Z6 0 o o 0 0 -1 o 7o
o TM.36 .6 o 0 0 0 0 ¢ -1 ’s
5 o o .76 0 o 0 -az; sz | |PA
o o o 1C. 76 0 -1 0 aa; C -G 216
o o o 7C . =G o 0 -1 -aag a3 226G
a fag
“1G
“2G
{36 |
— 9 . 7
5 o 3L.76 c v(A)2
0 O -3L - oG Y AN
) o 5 3L, 36 0 A
€. 16 0. o -3¢ 16 v
7C.56 30 0 -30 T S
TC. 36 -3C.3 o SEERIEE
B _

(8)
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Examination of Constraints

Again the equations have a solution only if the determinant of the
matrix of coefficients of the dependent variables is not zero. The
coefficient matrix will be of the form

B 0 3C. 16 0 t1s  tye |
o -BM.3G  3C.7%6 0 ths  tas
o M.3G6  3C. 30 0 tas  tas
0 O 0 1610 .t )
0 0 0 .20ty tee
0 0 0 1©-36 ¢, tes |

where the +tj3y are the coefficients of the two dependent G axes
coordinates. These two may be either one coordinate of angular velocity
and one coordinate of linear acceleration, or two of the coordinates of
angular velocity.

The determinant of (9) is of the same form as the determinant of (5),
but with the 8&pn replaced with the tij. The determinant of (9) is

[(EM 30y (3C - 36) - (M- 36)(3C 'EG)][iC‘ T9(tsstes - testse)
_7C. EG(t45tes - tgatas) + 1C - 3G(tastss - t55t46)]

The first condition necessary for the solution of equations (6) is
necessary also for the solution of equations (8); that is,

72 # 2 w/2
The second condition states
10 TC(tsstes - testss) - 1C - 2C(tystes - teatss)
+ 10 30(tyistss - tsstas) # O

We must examine the implications of this last condition for each of 12
combinations of 4 (independent) variables chosen from among the 6 G axes
coordinates (we exclude the three combinations which contain all three
angular coordinates and which have been accounted for in equations (6)).
For example, if aig, asG, asg, and Wig are independent, the second
condition for the determinant of (9) not to be zero is satisfied when

—1\0 x>
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1€ - I6(a;62) - I°- 3% -ai0826) + 10~ 3°(a10aa0) # 0
Equivalently,
a1G % 0
and
1€ - 1G(ayg) + 1€ - 26(azg) + 1€ - 3%(asg) # ©
If equations (2) are multiplied by the inverse of the matrix of (2), it
is apparent that the left side of the last inequality is exactly p\, one
of the dependent variables. 5o we can compile the following list of
combinations of independent variables and attendant restrictions.
Combination 1. a1G, asG, asG, W1G independent:
72 F t m/2
a1G % 0
p.?\. 7‘ 0
Combination 2. aig, azG, asd, Ya@ independent:
72 # * 1/2
azg # O
p.7\' 7[ ]
Combination 3. aiG, 82G, 823G, wa@ independent:
72 # £ n/2
asG f o)
oA # 0
Combination 4. aj;g, asg, wig, wag independent:
72 # £ wf2
aiG? + axG® % Y
If a3;g = 0, then

36.1C 4 0o
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If ase = 0, then

or, equivalently,

e
1+
=Y

\
no

72

1+

a
~

o

73 #

Combination 5. aig, 223, WiQg, Wag independent:

Combination 6. a1@¢, 823G, WaG, Wag independent:
Yo # = w/2
a3G % Y
6. 7C 4 o
or, equivalently,
Yo £ n/2
73 #t n/2
Combination 7. aiG,,2aG, WiG, WG independent:
7o F % /2
azG # O
§G—.1C % 0
Combination 8. ai1@, 3G, wi1G, WsG independent:
Yo =% nf2
a162 + asg® # O
If a,g = 0, then

36G.1C 4 0

~1\0
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If as3 = 0, then
7G.3C 40
or, equivalently,
Yo # /2
7s # tx/2
Combination 9. aiG, a3G, WG, waG independent:
. Yo # /2
{ azg # O

IG- IC %

O

or equivalently,

I+

Yo # % /2
Y3 #

Combination 10. apg, aszg, wWigs wee independent:

1+

n/2

- Yo £ n/f2
aiG % 0
36.1I¢ 40
Combination 11. apg, asg, W1G, wWag independent:
7o # £ 1/2
a1G # Y
5G . 7C £ 0
Combination 12. ap@g, asq, WG, Wsg independent:
72 # % n/2
a2G2 + a3G2 f 0
If asg = O then

§G. 7€ # 0

17
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If agg = O then
26.-3C 40

As before, the restrictions 1G.71C % 0, i =1, 2, 3 constrain the 1G
axis to be ocutside the plane perpendicular to the 1C axis.

Equations (8) can be rewritten in a form more convenient for solutilon.

e
B 0 -sin 75 0 o 0o o0 -1 0 0 3
0 cos 71 sin 7, cos 72 0 0 ¢} 0 0 -1 0 72
0 -sin 7 cos 71 cos 7a 0 0 0 0 o] 0 -1 73
0 0 0 cos Yz cos 73 -1 0 0 0 -asg azg D?\
0 o] 0 sin 7; sin 75 cos 7a o -1 0 asQ o] -aic aLg
-cos 71 sin 7a
0 0 0 cos 73 sin 73 cos 73 0 0 -1 -~asg a1G 0 850
+sin 77 ein 73
- - a3G
16
Wal
wWaG
— - -y
o] 0 sin 75 0 e(N)
0 0 =-sin 75 cos 7o 0 3p‘)\'5\
o] 6] -cos 71 COs 7o ¢} A
= -cos Yz cOs ¥s -cos 7z sin Y3 ] sin 7o év
/—sin Y1 sin 7Yz cos 73\ /—sin 71 sin 75 sin 7s ¢} -s5in Y1 cos Yo
\tcos 71 sin 73 / \~CO0S 71 cos 73
/—cos 71 sin Y5 cos 7a -cos 71 sin Y2 sin 73\ 0 ~C0S Y31 €COS Yo
\rsin 71 sin 73 +sin Y3 cos 73
(10)

THE INITIAT, CONDITIONS

Equations (10) and (6) can be programmed on an analog computer and
the output signals representing 71, 72, 73, and A used to drive the
simulator. Some additional information 1s needed, however. Initial
conditions must be set on these output signals. Initial values of 7,,
Y2, 73, and A can be calculated as follows. Assume that any simulation
will be started from a condition of constant linear acceleration and
constant angular velocity, and that the linear acceleration will be
specified. Then

Ao = 21Go10 + 82G,2% + 836,30 = P(A F2C - ¢3¢ (11)

~1\O £
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flo = leOlG + szééG + wsGogG = Adgc (12)

Where the subscript o denotes an initial condition, and g is the
acceleration due to gravity. According to the assumption then,

. . . ose

Yig = 725 = V35 = A=A=0

and

L2
o(Ao)” = JélGoz + asGy? + aa3Gy® - 87

We must now find values of Yig, Y205 8nd 73, which satisfy egquations (11)
and (12). Because of the assumptions of steady state of Ay and Qo, we
have one redundancy among the three angles 7Yi,, 724, 80d 7V3g:. In other
words, we can arbitrarily choose an initial value for one of them, and
then solve for the other two. In the case of the Ames simulator the

angle most advantageously chosen arbitrarily is Y245 since 7o 1is
restricted to about tSOO displacement. To solve for 71, and Y3, in terms
of 7Yz we can use equations (2). Setting pAN = 0 and ay = -g, and writing
the dot products as their trigonometric equivalents, we have the three

equations: N

y 2 . .
a1G, = =P(A,) cos 7z, sin Y3, - g sin Yz,

© 2, . . X
82G, = -P(Ao)“(sin 71, sin 7p, sin Ygy + coc Y14 cos 730)

? (13)

+ g sin Y14 COE Vg

-p(Ag)*(cos Y1 8in 725 sin 7ag - sin 714 cos Y30)

1

832G,

+ g COS 710 cogL 720
J

The first of these equations can be sclved for 7gay, since every other
variable in it is known. Then each of these two values can be used to
solve simultaneously the second and third equations for 7i,. Multiplying
the second of equations (13) by (-cos 71,) and the third by (sin 714),
adding, and transposing yields:

-2
asG, sin 71, = p(Ny) cos 73, + aaG, €08 Yig (14)

Then, if equation (14) is squared and (l - 0052710) substituted for
sin27lo,

(agGOZ + asGOZ) cosz7lo + Eaggop(ko)zcos Y3, €OS Y1

—
+ [P(No)¥] cos2r 3, - 2sG,° = O
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Then

- _
-aggop(ko) cos Yz, * a3GON/a2G02 + 832 - [p(ko)2]2cos2730

cos 71 =
© asg = + asg Z
o) o}

(15)

For each of the values of Y3, obtained from the first of equations
(13), two values of 71, Wwill be obtained from (15), only one of which,
the correct one, satisfies {(14).

AXES OF THE SIMULATED VEHICLE

Throughout the development of the equations the simulator cockpit
axes were named 1G, 20, 3G instead of being given some x, y, z relation-
ship to axes of the vehicle to be simulated. This was done for the
following reason. let X®, ¥5, and Z5 be unit vectors associated,
respectively, with the longitudinal axis, the lateral axis, and the
vertical axis of an axis system fixed in the simulated vehicle. The
axes of the simulated vehicle can be related to the axes of the simulator
cockpit in three ways:

Orientation X,

x5 = G

¥5 = 2G

75 = 3G
Orientation X,

;S - §G

;S = 3G

7S = 716G
Orientation Xg,

x5 = 3G

§S = IG

TAN = e
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Of course, the pilot and the interior of the simulator cockpit must be
oriented according to the § axes system. Depending on the problem to

be simulated, that is, the independent variablec, one orientation may be
more desirable than the others, or there may be no difference among them.
For example, suppose for a particular problem it is necessary to faithfully
simulate &y, az, p, and q. Then, if X, were chosen apg, asg, Wig, and
Wog would be the independent variables, This is Combination 10 of the
preceding section. The restrictions on the simulation then are:

Yo # £ n/2
ax % o)
z5.1C 4 0

If X5 were chosen, asg, 210, Wo@, and Wag would be independent. This
is Combination 9, with restrictions

72 #
ax % 0
Vs #

If X3 were chosen, ai1G, as@, wag and w;g would be independent. This
is Combination 5, with restrictions

72 #
ax % 0

2510 40

I+
a
~
no

H+
=)
~
o

I+

n/2

Which of the three arrangements is best will depend on the particular
problem and on the physical limitations of the simulator.

CONCLUDING REMARKS

The coordinate-transformation equations developed in this report
apply in particular to the NASA-Ames five-degree-of-freedom riloted
flight simulator. However, the method for developing the equations and
examining the singularities can be applied to other similar simulators
with differently ordered gimbals or a different number of degrees of
freedom or both.

For reasons explained in the text, the eguations were developed
for four degrees of freedom instead of five. It appears possible, within
the restrictions imposed by singularities in the equations, to reproduce
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on the simulator any combination of four of the six components of

angular and linear motion of an actual vehicle. Examination of the .
coefficients in the equations indicates those positions of the gimbals

which correspond to singular points of the solutions; so, in practice

the simulation can be set up to avoid those positions.

It appears also that the effects of the singularities may be avolded,
in some cases, by proper orientation of the pilot with respect to the

gimbals.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 11, 1961

~1N\O >

REFERENCE

1. Doolin, Brian F.: The Application of Matrix Methods to Coordinate
Transformations Occurring in Systems Studies Involving Large
Motions of Aircraft. NACA TN 3968, 1957.



6£982-V

* JOQBTNIITS

IUYSTTI po3oTTd wopassri-Jo

-92189p-0ATJ sswy oYL -*T oandTg




.

_~—Outer gimbal

inner gimbal
Cockpit %
—J-6
1

/

\

(<]
— <
—dM
3% ¢ 5°
[
M

s

]

v

|

A\

Centrifuge arm

=L
3

Figure 2.- The coordinate systems of the simulator.

NASA-Langley, 1062 A-49T

10 F P



